PRELIMINARY PRODUCT SPECIFICATION

Integrated Circuits Group

LHF00L30 Flash Memory 16M (1Mb x 16)

(Model Number: LHF00L30)

Spec. Issue Date: May 25, 2004 Spec No: FM045024

; Prod		CIF	ELIMINA FICA	RY	May. 25, 2004
		CIF		RY	
		CIF			N S
Pro		CIF			N S
Pro	duct Type	16Mb			
			FOOL3		
J	Model No		L H F 0 0 L 3 0		
* Re	his specifications efer to LHF00LX RS ACCEPTAN	X series App	pages including the bendix (FUM03802	e cover and apper 2).	ndix.
BY:			PRESEN	TED	
<u></u>			<u>BY:</u>	HED HOTTA Ppt. General Man	ager
			REVI	ewed by: <i>Takata</i>	PREPARED BY: Scitani
			Syster Integr	ct Development m-Flash Division ated Circuits Gro RP CORPORATI	oup

LHF00L30

- SHARP
 - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
 - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment <u>which demands high</u> <u>reliability</u>, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
 - Please direct all queries regarding the products covered herein to a sales representative of the company.

PAGE

CONTENTS

PAGE

48-Lead TSOP (Normal Bend) Pinout 3
Pin Descriptions 4
Memory Map 5
Identifier Codes and OTP Address for Read Operation
OTP Block Address Map for OTP Program 7
Bus Operation 8
Command Definitions
Functions of Block Lock and Block Lock-Down 11
Block Locking State Transitions upon Command Write 11
Block Locking State Transitions upon WP# Transition 12
Status Register Definition

1 Electrical Specifications	14
1.1 Absolute Maximum Ratings	14
1.2 Operating Conditions	14
1.2.1 Capacitance	15
1.2.2 AC Input/Output Test Conditions	15
1.2.3 DC Characteristics	16
1.2.4 AC Characteristics - Read-Only Operations	18
1.2.5 AC Characteristics - Write Operations	20
1.2.6 Reset Operations	22
1.2.7 Block Erase, Full Chip Erase, Program and OTP Program Performance.	23
2 Related Document Information	24

LHF00L30

LHF00L30 16Mbit (1Mbit×16) Flash MEMORY

- 16-M density with 16-bit I/O Interface
- Read Operation

HARP

- 70ns
- Low Power Operation
 - 2.7V Read and Write Operations
 - V_{CCO} for Input/Output Power Supply Isolation
 - Automatic Power Savings Mode reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- Operating Temperature -40° C to $+85^{\circ}$ C
- CMOS Process (P-type silicon substrate)
- Flexible Blocking Architecture
 - Eight 4-Kword Parameter Blocks
 - One 32-Kword Block
 - Fifteen 64-Kword Blocks
 - Top Parameter Location

- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with $V_{PP} {\leq} V_{PPLK}$
 - Block Erase, Full Chip Erase, Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 10µs/Word (Typ.) Programming
 - 12.0V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.8s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 Minimum 100,000 Block Erase Cycles
- 48-Lead TSOP (Normal Bend)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at $V_{CC}=2.7V-3.6V$ and $V_{PP}=1.65V-3.6V$ or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The memory array block architecture utilizes Enhanced Data Protection features, which provides maximum flexibility for safe nonvolatile code and data storage.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

* ETOX is a trademark of Intel Corporation.

A15 1 48 A16 A14 2 47 Vccq A13 3 46 GND A12 4 47 Vccq A13 3 46 GND A12 4 47 Vccq A13 3 44 DQ7 A10 6 43 DQ14 A9 7 42 DQ6 A8 8 41 DQ13 NC 9 40 DQ2 NC 10 48-LEAD TSOP 39 DQ4 RST# 12 12mm x 20mm 37 Vcc VPP 13 TOP VIEW 36 DQ11 WP# 14 TOP VIEW 35 DQ3 A19 15 34 DQ2 A17 17 A6 19 30 DQ8 A5 20 29 DQ0 A4 21 28 0E# 27 GND A2 23 A0 A1 24 25			
	A14 2 A13 3 A12 4 A11 5 A10 6 A9 7 A8 8 NC 9 NC 10 WE# 11 RST# 12 VPP 13 WP# 14 A19 15 A18 16 A17 17 A7 18 A6 19 A3 22 A2 23	STANDARD PINOUT 12mm x 20mm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 1. Pin Descriptions	Table 1	. Pin	Descrip	tions
---------------------------	---------	-------	---------	-------

Symbol	Туре	Name and Function
A ₁₉ -A ₀	INPUT	ADDRESS INPUTS: Inputs for addresses.
DQ ₁₅ -DQ ₀	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}), RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
V _{PP}	INPUT/SUPPLY	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \leq V_{PPLK}$, block erase, full chip erase, program or OTP program cannot be executed and should not be attempted. Applying 12.0V±0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying 12.0V±0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to 12.0V±0.3V for a total of 80 hours maximum. Use of this pin at 12.0V+0.3V beyond these limits may reduce block cycling capability or cause permanent damage.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.
,		

1) 0-	
FFFFF	4-Kword Block 23
FF000 FEFFF	4-Kword Block 22
FE000 FDFFF	4-Kword Block 22
FD000	4-Kword Block 21
FCFFF FC000	4-Kword Block 20
FBFFF FB000	4-Kword Block 19
FAFFF FA000	4-Kword Block 18
F9FFF F9000	4-Kword Block 17
F8FFF F8000	4-Kword Block 16
F7FFF F0000	32-Kword Block 15
ÉFFFF E0000	64-Kword Block 14
DFFFF D0000	64-Kword Block 13
CFFFF C0000	64-Kword Block 12
BFFFF B0000	64-Kword Block 11
AFFFF A0000	64-Kword Block 10
9FFFF 90000	64-Kword Block 9
8FFFF 80000	64-Kword Block 8
7FFFF 70000	64-Kword Block 7
6FFFF 60000	64-Kword Block 6
5FFFF 50000	64-Kword Block 5
4FFFF 40000	64-Kword Block 4
3FFFF 30000	64-Kword Block 3
2FFFF 20000	64-Kword Block 2
1FFFF 10000	64-Kword Block 1
0FFFF 00000	64-Kword Block 0
00000	

Figure 2. Memory Map (Top Parameter)

	Table 2. Identifier Codes and OTP Addres	Address Data N [A19-A0] [DQ15-DQ0] N 00000H 00B0H 00A4H			
	Code			Notes	
Manufacturer Code	Manufacturer Code	00000H	00B0H		
Device Code	Device Code	00001H	00A4H		
Block Lock Configuration	Block is Unlocked		$[DQ_{15}-DQ_{0}]$ $00B0H$ $00A4H$ $DQ_{0} = 0$ $DQ_{0} = 1$ $DQ_{1} = 0$ $DQ_{1} = 1$ $OTP-LK$	1	
Code	Block is Locked	Block		1	
	Block is not Locked-Down	Address + 2	$DQ_1 = 0$	1	
	Block is Locked-Down		DQ ₁ = 1	1	
OTP	OTP Lock	00080H	OTP-LK	2	
	ОТР	00081-00088H	OTP	3	

NOTES:

Block Address = The beginning location of a block address. DQ₁₅-DQ₂ are reserved for future implementation.
 OTP-LK=OTP Block Lock configuration.
 OTP=OTP Block data.

[A ₁₉ -A ₀]	
000088H	
	Customer Programmable Area
000085H	
000084H	
	Factory Programmed Area
000081H	
000080H	Reserved for Future Implementation (DQ15-DQ2)
	mmable Area Lock Bit (DQ ₁)

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

				Dus oper				
Mode	Notes	RST#	CE#	OE#	WE#	Address	V _{PP}	DQ ₁₅₋₀
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	Х	D _{OUT}
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	Х	Х	High Z
Standby		V _{IH}	V _{IH}	Х	Х	Х	Х	High Z
Reset	3	V _{IL}	Х	Х	Х	Х	Х	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 2	Х	See Table 2
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	Х	See Appendix
Read Status Register	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	Х	D _{OUT}
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	Х	V _{PPH1/2}	D _{IN}

Table 3. Bus $Operation^{(1,2)}$

NOTES:

Refer to DC Characteristics. When V_{PP}≤V_{PPLK}, memory contents can be read, but cannot be altered.
 X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or V_{PPH1/2} for V_{PP} Refer to DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages.
 RST# at GND±0.2V ensures the lowest power consumption.

KS1# at GND=0.2 v ensures the lowest power consumption.
 Command writes involving block erase, full chip erase, program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=2.7V-3.6V.
 Refer to Table 4 for valid D_{IN} during a write operation.
 Never hold OE# low and WE# low at the same timing.

7. Refer to Appendix of LHF00LXX series for more information about query code.

	Bus					Sycle Second Bus Cycle			
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	
Read Array	1		Write	Х	FFH				
Read Identifier Codes/OTP	≥2	4	Write	Х	90H	Read	IA or OA	ID or OD	
Read Query	≥2	4	Write	Х	98H	Read	QA	QD	
Read Status Register	2		Write	Х	70H	Read	Х	SRD	
Clear Status Register	1		Write	Х	50H				
Block Erase	2	5	Write	BA	20H	Write	BA	D0H	
Full Chip Erase	2	5, 8	Write	Х	30H	Write	Х	D0H	
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD	
Block Erase and Program Suspend	1	7, 8	Write	Х	B0H				
Block Erase and Program Resume	1	7, 8	Write	Х	D0H				
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H	
Clear Block Lock Bit	2	9	Write	BA	60H	Write	BA	D0H	
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH	
OTP Program	2	8	Write	OA	C0H	Write	OA	OD	

Table 4. Command Definitions⁽¹⁰⁾

NOTES:

1. Bus operations are defined in Table 3.

2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.

X=Any valid address within the device.

IA=Identifier codes address (See Table 2).

QA=Query codes address. Refer to Appendix of LHF00LXX series for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command.

OA=Address of OTP block to be read or programmed (See Figure 3).

3. ID=Data read from identifier codes. (See Table 2).

QD=Data read from query database. Refer to Appendix of LHF00LXX series for details.

SRD=Data read from status register. See Table 8 for a description of the status register bits.

- WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
- OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (See Table 2).

The Read Query command is available for reading CFI (Common Flash Interface) information.

- 5. Block erase, full chip erase or program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. If the program operation and the erase operation are both suspended, the suspended program operation will be resumed first.
- 8. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.

- 9. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
 10. Commands other than those shown above are reserved by SHARP for future device implementations and should not be
- used.

State	WP#	DQ ₁ ⁽¹⁾	$\mathrm{DQ}_{0}^{(1)}$	State Name	Erase/Program Allowed ⁽²⁾
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

NOTES:

1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked.

 $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.

4. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

5. OTP (One Time Program) block has the lock function which is different from those described above.

	Current S	State		Result after Lock Command Written (Next State)				
State	WP#	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

Table 6.	Block Locking	State	Transitions	upon	Command	Write ⁽⁴⁾
14010 0.	Dioen Loening	Diale	i i anoitiono (apon	Communa	

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0=0$), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

D. C. I		Current Sta	ate		Result after WP# Transition (Next State)		
Previous State	State	State WP# DQ_1 DQ_0 $WP#=0\rightarrow 1^{(1)}$		WP#= $0 \rightarrow 1^{(1)}$	WP#=1→0 ⁽¹⁾		
-	[000]	0	0	0	[100]	-	
-	[001]	0	0	1	[101]	-	
[110] ⁽²⁾	[011]	0	1	1	[110]	-	
Other than [110] ⁽²⁾					[111]	-	
-	[100]	1	0	0	-	[000]	
-	[101]	1	0	1	-	[001]	
-	[110]	1	1	0	-	[011] ⁽³⁾	
-	[111]	1	1	1	-	[011]	

Table 7. Block Locking State Transitions upon WP# Transition⁽⁴⁾

NOTES:

1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{IL}.

2. State transition from the current state [011] to the next state depends on the previous state. 3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

12

R	R	R	R	R	R	R	R	
15	14	13	12	11	10	9	8	
WSMS	BESS	BEFCES	POPS	VPPS	PSS	DPS	R	
7	6	5	4	3	2	1	0	
	= RESERVED EMENTS (R)	FOR FUTURE			NO	TES:		
R.7 = WRITH $1 = Ready$ $0 = Busy$		HINE STATUS ((WSMS)	Status Register Machine).	indicates the s	status of the WS	M (Write Sta	
1 = Block	K ERASE SUS Erase Suspende Erase in Progre		(BESS)		P program com	block erase, fu		
 SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase 			If both SR.5 and SR.4 are "1"s after a block erase, full chierase, program, set/clear block lock bit, set block lock-dow bit attempt, an improper command sequence was entered.					
SR.4 = PROGRAM AND OTP PROGRAM STATUS (POPS) 1 = Error in Program or OTP Program 0 = Successful Program or OTP Program			SR.3 does not provide a continuous indication of V_{PP} level only affective the WSM interrogates and indicates the V_{PP} level only affective the Block Erase, Full Chip Erase, Program or OTP Program command sequences. SR.3 is not guaranteed to repeate accurate feedback when $V_{PP} \neq V_{PPH1}$, V_{PPH2} or V_{PPLK} .					
SR.3 = V_{PP} STATUS (VPPS) 1 = V_{PP} LOW Detect, Operation Abort 0 = V_{PP} OK				SR.1 does not provide a continuous indication of block loc bit. The WSM interrogates the block lock bit only after Bloc Erase, Full Chip Erase, Program or OTP Program commar sequences. It informs the system, depending on the attempte operation, if the block lock bit is set. Reading the block loc configuration codes after writing the Read Identifier Code OTP command indicates block lock bit status.				
SR.2 = PROGRAM SUSPEND STATUS (PSS) 1 = Program Suspended 0 = Program in Progress/Completed				SR.15 - SR.8 and SR.0 are reserved for future use and be masked out when polling the status register.				
1 = Erase	or Program Atte d Block, Opera							
	ERVED FOR			x				

14

 Electrical Specifications Absolute Maximum Ratings[*] 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the
Operating Temperature	"Operating Conditions" may affect device
During Read, Erase and Program40°C to +85°C $^{(1)}$	reliability.
	NOTES:
Storage Temperature	1. Operating temperature is for extended temperature
During under Bias40°C to +85°C	product defined by this specification. 2. All specified voltages are with respect to GND.
During non Bias65°C to +125°C	 All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC}, V_{CCQ} and V_{PP} pins. During transitions,
Voltage On Any Pin (except V_{CC} , V_{CCQ} and V_{PP})	this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is
0.5V to V_{CCQ}+0.5V $^{(2)}$	V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
V_{CC} and V_{CCQ} Supply Voltage0.2V to +3.9V $^{(2)}$	 Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns. V_{PP} erase/program voltage is normally 2.7V-3.6V.
V_{PP} Supply Voltage0.2V to +12.6V ^(2, 3, 4)	Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
Output Short Circuit Current 100mA ⁽⁵⁾	5. Output shorted for no more than one second. No more than one output shorted at a time.

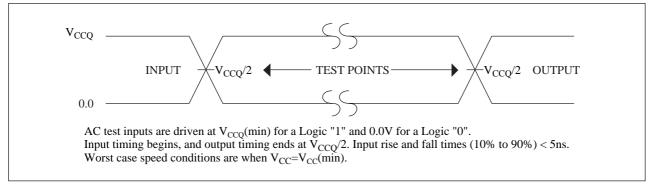
1.2 Operating Conditions

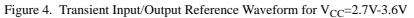
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
I/O Supply Voltage	V _{CCQ}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V _{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V _{PPH2}	11.7	12.0	12.3	V	1, 2
Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at V _{PPH2}				80	Hours	

NOTES:

1. See DC Characteristics tables for voltage range-specific specification.

2. Applying V_{PP}=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on each block. A permanent connection to V_{PP} =11.7V-12.3V is not allowed and can cause damage to the device.


1.2.1 Capacitance ⁽¹⁾ (T_A =+25°C, f=1MHz)


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} =0.0V		4	7	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		6	10	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

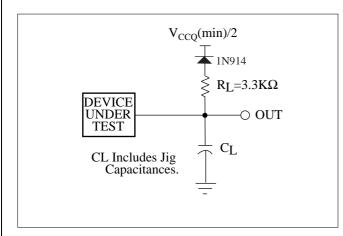


Figure 5. Transient Equivalent Testing Load Circuit

Table 9. Test Configuration Capacitance Loading Value

Test Configuration	C _L (pF)
V _{CC} =2.7V-3.6V	50

1.2.3 DC Characteristics

		• CC=2	2.7 - 5.0				
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Load Current	1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I _{LO}	Output Leakage Current	1	-1.0		+1.0	μΑ	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I _{CCS}	V _{CC} Standby Current	1,7		4	10	μΑ	$V_{CC}=V_{CC}Max.,$ CE#=RST#= $V_{CCQ}\pm 0.2V,$ WP#= V_{CCQ} or GND
I _{CCAS}	V _{CC} Automatic Power Savings Current	1,4,7		4	10	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#=V _{CCQ} or GND
I _{CCD}	V _{CC} Reset Current	1,7		4	10	μA	RST#=GND±0.2V
I _{CCR}	V _{CC} Read Current	1,7			17	mA	$V_{CC}=V_{CC}Max.,$ $CE\#=V_{IL},$ $OE\#=V_{IH},$ f=5MHz
т	V _{CC} Program Current	1,5,7		20	60	mA	V _{PP} =V _{PPH1}
I _{CCW}	V _{CC} Program Current	1,5,7		10	20	mA	V _{PP} =V _{PPH2}
Τ	V _{CC} Block Erase,	1,5,7		10	30	mA	V _{PP} =V _{PPH1}
I _{CCE}	Full Chip Erase Current	1,5,7		4	10	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} Program or Block Erase Suspend Current	1,2,7		10	200	μΑ	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read Current	1,6,7		2	5	μΑ	V _{PP} ≤V _{CC}
I _{PPW}	V _{PP} Program Current	1,5,6,7		2	5	μA	V _{PP} =V _{PPH1}
трру	v pp 1 logram Current	1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
IDDE	V _{PP} Block Erase,	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPE}	Full Chip Erase Current	1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
I _{PPWS}	V _{PP} Program	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
*PPWS	Suspend Current	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}
I _{PPES}	V _{PP} Block Erase Suspend Current	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
-rres	Pr Stock Suspend Current	1,6,7		10	200	μA	V _{PP} =V _{PPH2}

$V_{CC} = 2.7 V - 3.6 V$	
· (·(·=================================	

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	5			0.2	V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OL} =100µA
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OH} =-100µA
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, Program or OTP Program Operations		1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, Full Chip Erase, Program or OTP Program Operations		11.7	12.0	12.3	V	
V _{LKO}	V _{CC} Lockout Voltage		1.5			V	

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V, V_{CCQ} =3.0V and T_A =+25°C unless V_{CC} is specified.

2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} .

 Block erase, full chip erase, program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.), and above V_{PPH2}(max.).

4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.

5. Sampled, not 100% tested.

6. V_{PP} is not used for power supply pin. With $V_{PP} \leq V_{PPLK}$, block erase, full chip erase, program and OTP program cannot be executed and should not be attempted.

Applying 12.0V \pm 0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

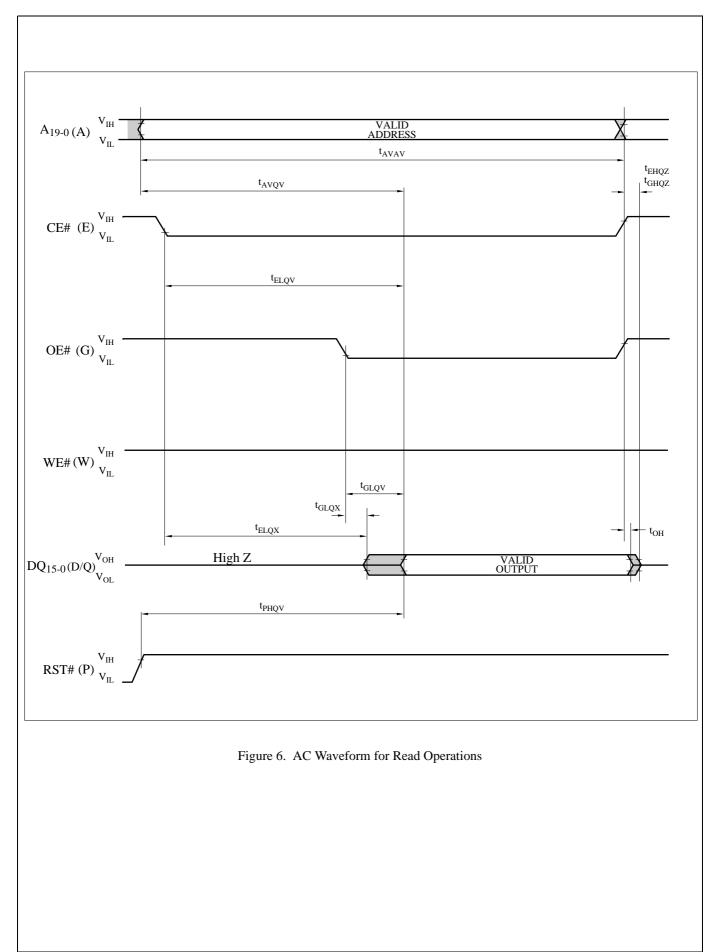
Applying 12.0V \pm 0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to 12.0V \pm 0.3V for a total of 80 hours maximum.

7. For all pins other than those shown in test conditions, input level is V_{CCQ} or GND.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

$V_{CC}=2.7V-3.6V, T_{A}=-40^{\circ}C \text{ to }+85$	°C
---	----

Symbol	Parameter		Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		70		ns
t _{AVQV}	Address to Output Delay			70	ns
t _{ELQV}	CE# to Output Delay	3		70	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns


NOTES:

1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.

2. Sampled, not 100% tested.

3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV} .

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		70		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	8	50		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (CE#) High		0		ns
t _{WHAX} (t _{EHAX})	Address Hold from WE# (CE#) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	20		ns
t _{SHWH} (t _{SHEH})	WP# High Setup to WE# (CE#) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3,7		t _{AVQV} + 50	ns

$V_{CC}=2.7V-3.6V$, $T_{A}=-40^{\circ}C$ to $+85^{\circ}C$

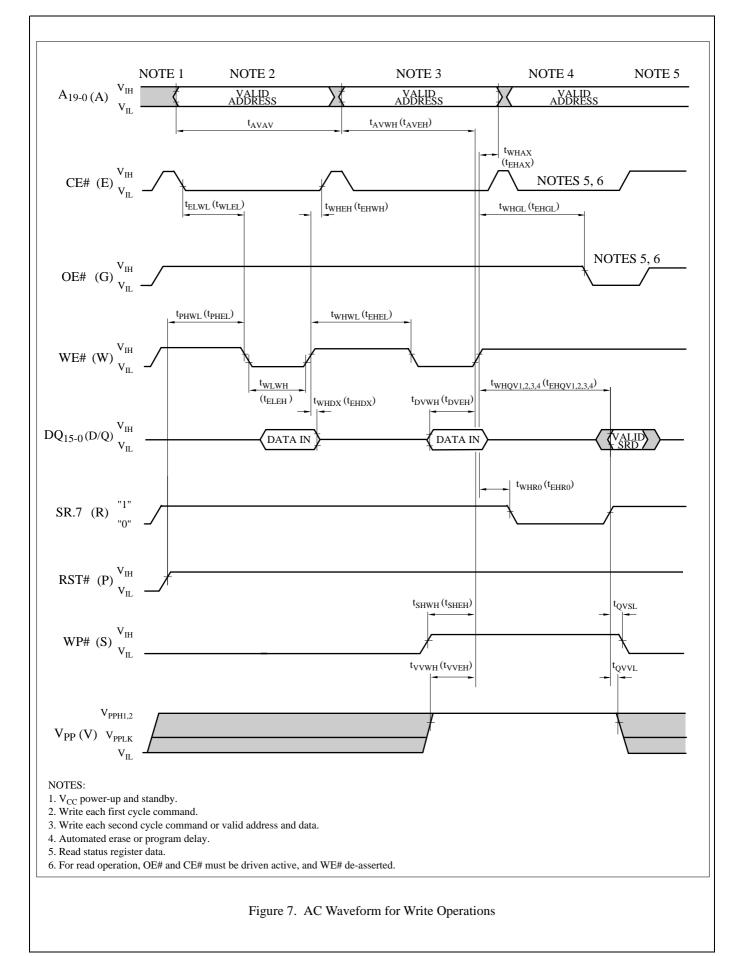
NOTES:

1. The timing characteristics for reading the status register during block erase, full chip erase, program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

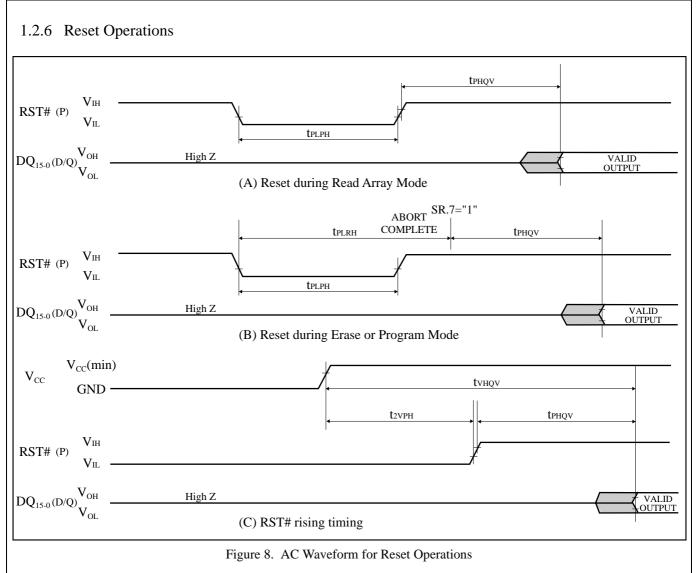
2. A write operation can be initiated and terminated with either CE# or WE#.

3. Sampled, not 100% tested.

4. Write pulse width (twp) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of


CE# or WE# (whichever goes high first). Hence, $t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}$. 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling edge of CE# or WE# (whichever goes low last). Hence, $t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}$. 6. V_{PP} should be held at $V_{PP}=V_{PPH1/2}$ until determination of block erase, full chip erase, program or OTP program success

(SR.1/3/4/5=0).


7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVOV}+100ns.

8. Refer to Table 4 for valid address and data for block erase, full chip erase, program, OTP program or lock bit configuration.

21

Reset AC Specifications (V_{CC}=2.7V-3.6V, T_A= $-40^{\circ}C$ to $+85^{\circ}C$)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	PH V _{CC} 2.7V to RST# High		100		ns
t _{VHQV}	V _{CC} 2.7V to Output Delay			1	ms

NOTES:

1. A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for t_{PHQV}.

2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.

3. Sampled, not 100% tested.

4. If RST# asserted while a block erase, full chip erase, program or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Full Chip Erase, Program and OTP Program Performance⁽³⁾

Symbol	Parameter	Notes	V _{PP} =V _{PPH1} (In System)			PP=VPPI Manufactu		Unit	
			Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB}	4-Kword Parameter Block Program Time	2		0.05	0.3		0.04	0.12	S
t _{WMB1}	32-Kword Block Program Time	2		0.34	2.4		0.31	1.0	S
t _{WMB2}	64-Kword Block Program Time	2		0.68	4.8		0.62	2.0	S
t _{WHQV1} / t _{EHQV1}	Word Program Time	2		10	200		9	185	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4-Kword Parameter Block Erase Time	2		0.26	4		0.2	4	s
t _{WHQV3} / t _{EHQV3}	32-Kword Block Erase Time	2		0.51	5		0.5	5	s
t _{WHQV4} / t _{EHQV4}	64-Kword Block Erase Time	2		0.82	8		0.8	8	S
	Full Chip Erase Time	2		20	175		16.5	175	S
t _{WHRH1} / t _{EHRH1}	Program Suspend Latency Time to Read	4		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	500			500			μs

 V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C

NOTES:

1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12.0V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

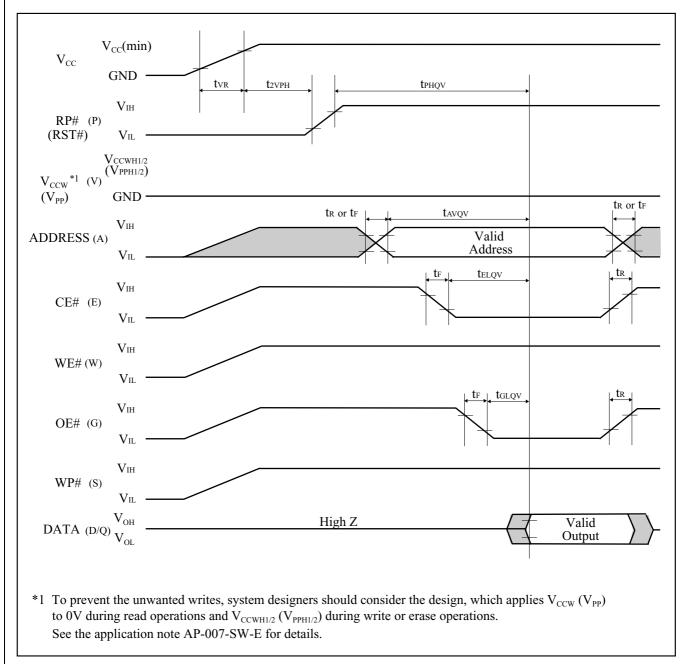
3. Sampled, but not 100% tested.

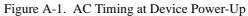
4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM03802	LHF00LXX series Appendix


NOTE:


1. International customers should contact their local SHARP or distribution sales offices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time			1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

NOTES:

1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

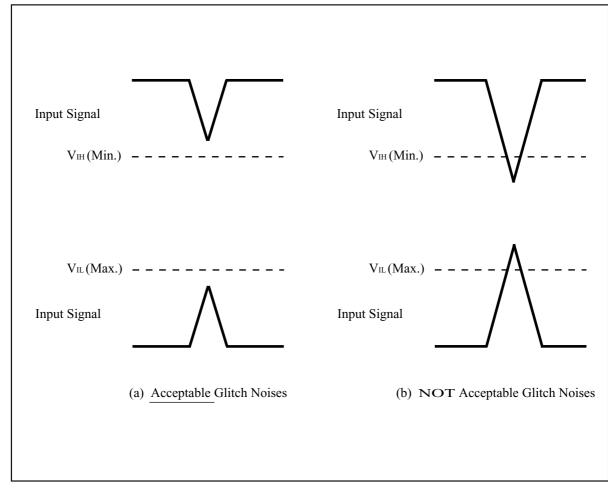
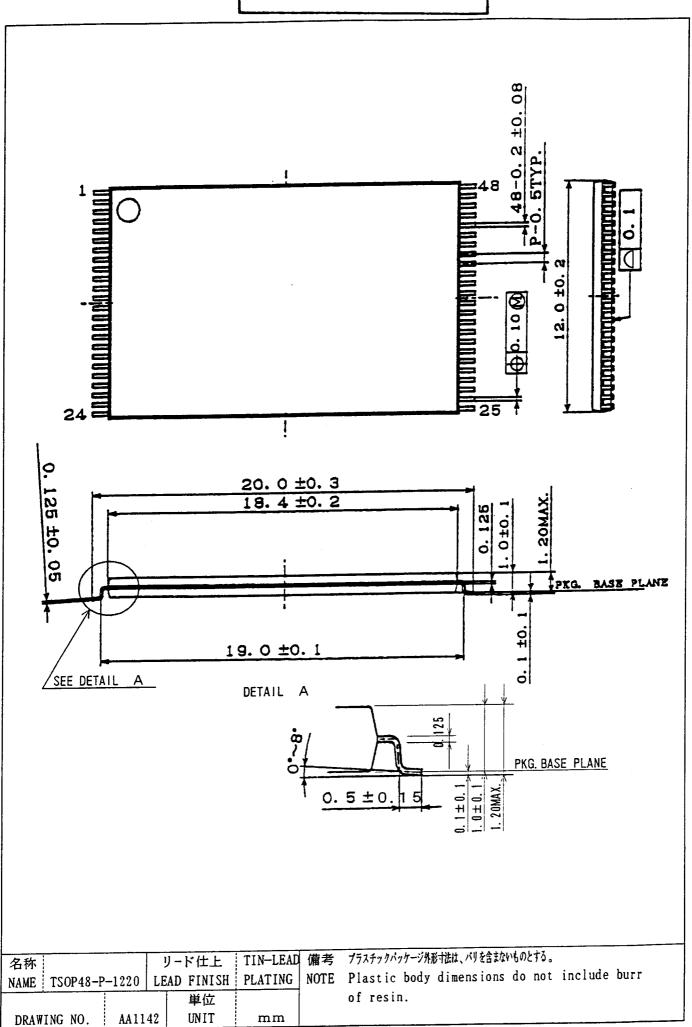


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾


Document No.	Document Name	
AP-001-SD-E	Flash Memory Family Software Drivers	
АР-006-РТ-Е	06-PT-E Data Protection Method of SHARP Flash Memory	
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit	

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

I I Iŭmon 1000 IIV III N/──\I I I

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP®

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819